Analysis of Forecasting Demand for Wheel Loader Unit Rental Using the Arima Method to Determine Safety Stock Inventory and Service Level at PT Petrokopindo Cipta Selaras

##plugins.themes.academic_pro.article.main##

Maula Aringga Maghfur
Tranggono Tranggono

Abstract

PT XYZ is a company engaged in the rental of heavy equipment such as excavators, forklifts, bulldozers, and Wheel Loaders. The problem faced is unpreparedness in dealing with fluctuations in demand, so there is often a backlog or excess inventory. This research aims to improve the accuracy of demand forecasting and determine safety stocks to anticipate these uncertainties. The research was conducted using historical data on Wheel Loader rental requests from September to November 2024. The data was processed using the ARIMA (Autoregressive Integrated Moving Average) method through several stages, namely stationarity testing, identification of ACF and PACF, model estimation, parameter testing, white noise test, and selection of the best model. The resulting significant model was ARIMA (3,1,1), with a MAPE error value of 21% (79% accuracy), an increase of 9% compared to the previous method with an error of 30%. The results of the calculation of safety stock to deal with fluctuations in demand at various service levels show that the need for 2,688 units at the 90% level, increased to 3,444 units at the 95% level, and reached 3,900 units at the 97% level. This study shows that the ARIMA method is able to improve the accuracy of forecasting and provide a better basis for determining safety stock in managing fluctuations in heavy equipment rental demand.

##plugins.themes.academic_pro.article.details##

How to Cite
Maghfur, M. A. and Tranggono, T. (2025) “Analysis of Forecasting Demand for Wheel Loader Unit Rental Using the Arima Method to Determine Safety Stock Inventory and Service Level at PT Petrokopindo Cipta Selaras”, Ranah Research : Journal of Multidisciplinary Research and Development, 7(3), pp. 2179-2191. doi: 10.38035/rrj.v7i3.1368.

References

Amdi Rizal, M., Ahmad, I., Aftirah, N., & Lestari, W. (2022). Aplikasi Inventory Persediaan Barang Berbasis Web Menggunakan Metode Extreme Programming (Studi Kasus : Esha 2 Cell). Jl. ZA. Pagar Alam, 3(2), 2774–5384.
Ananda, R. D., Kom, K. E. S., Kom, M., Kom, A. P. S., & Kom, M. (2020). Implementasi Data Mining Untuk Mengetahui Pola Rental Alat-Alat Berat ( Kontruksi ) Di PT. Bisma Niaga Lestari Medan Menggunakan Algoritma Apriori. Jurnal CyberTech, September.
Dadhich, M., Pahwa, M. S., Jain, V., & Doshi, R. (2021). Predictive Models for Stock Market Index Using Stochastic Time Series ARIMA Modeling in Emerging Economy. Lecture Notes in Mechanical Engineering, June, 281–290. https://doi.org/10.1007/978-981-16-0942-8_26
Firmina, N. S., Charles, E. M., & Nelson, N. (2022). Penggunaan Model Autoregressive Integrated Moving Average (ARIMA) Untuk Meramalkan Nilai Tukar Petani (NTP) di Provinsi Sulawesi Utara. Jurnal Matematika Dan Aplikasi, 11(1), 59–66. https://ejournal.unsrat.ac.id/index.php/decartesian
Hassyddiqy, H., & Hasdiana, H. (2023). Analisis Peramalan (Forecasting) Penjualan Dengan Metode ARIMA (Autoregressive Integrated Moving Average) Pada Huebee Indonesia. Data Sciences Indonesia (DSI), 2(2), 92–100. https://doi.org/10.47709/dsi.v2i2.2022
Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2021). Global Supply Chain and Operations Management. Springer Texts in Business and Economics, 11, 341–342.
Jamila, A. U., Siregar, B. M., & Yunis, R. (2021). Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest. Paradigma - Jurnal Komputer Dan Informatika, 23(1). https://doi.org/10.31294/p.v23i1.9781
Khoiri, H. A. (2022). Analisis Deret Waktu Univariat (Issue 85). https://www.google.co.id/books/edition/Analisis_Deret_Waktu_Univariat_Linier/XGimEAAAQBAJ?hl=id&gbpv=1&dq=deret+waktu&printsec=frontcover
Marlim, Y. N., & Hajjah, A. (2022). Analisis Kuantatif Penjualan Menggunakan Metode Single Exponential Smoothing. JOISIE Journal Of Information System And Informatics Engineering, 6(Desember), 111–116.
Mutamakkinah, H., Santoso, R., & Tarno. (2024). PERBANDINGAN METODE ARIMA DAN MODEL FUNGSI TRANSFER UNTUK MERAMALKAN CURAH HUJAN DI JAWA TENGAH PERIODE TAHUN 2023-2024. GAUSSIAN, 13(1), 280–288. https://doi.org/10.14710/j.gauss.13.1.280-288
Nanlohy, Y. W. A. (2021). Autoregressive Integrated Moving Average (ARIMA) for Rainfall Forecasting in Surabaya City. Tensor, 2(1), 25–32. https://topics-beta.apps.semanticscholar.org/topic/7685996683?corpusId=221316349
Pangestu, D. D., Sumartono, B., & Bhirawa, D. W. T. (2021). Analisis Peramalan Permintaan Produk Kipas Angin Dengan Metode Arima (Autoregressive Integrated Moving Average) Untuk Menentukan Persediaan Safety Stock Dan Service Level Pada Pt. Catur Sukses Internasional. Jurnal Teknik Industri, 8(1), 1–11. https://journal.universitassuryadarma.ac.id/index.php/jtin/article/view/802/783
Prianda, B. G., & Widodo, E. (2021). Perbandingan Metode Seasonal Arima Dan Extreme Learning Machine Pada Peramalan Jumlah Wisatawan Mancanegara Ke Bali. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 639–650. https://doi.org/10.30598/barekengvol15iss4pp639-650
Qodri, M., Mukhaiyar, U., Ananda, V., & Maisaroh, S. (2024). Comparison of Stock Prediction Using ARIMA Model with Multiple Interventions of Step and Pulse Functions. Jurnal Ilmiah Sains, 24(April), 1–16. https://doi.org/10.35799/jis.v24i1.51269
Rahma, A. S., & Dahda, S. S. (2024). Perbandingan Peramalan Model ARIMA dan Trend Linear Produk X Pada PT ABC. In G-Tech: Jurnal Teknologi Terapan (Vol. 8, Issue 2, pp. 909–920). https://doi.org/10.33379/gtech.v8i2.4075
Salsabila, N., & Oktaviarina, A. (2024). PERAMALAN PDRB DI JAWA TIMUR MENGGUNAKAN MODEL ARIMAX DENGAN VARIABEL EKSOGEN EKSPOR-IMPOR. Jurnal Ilmiah Matematika, 12(2), 418–427. https://ejournal.unsrat.ac.id/index.php/decartesian
Saumi, F., & Amalia, R. (2020). Penerapan Model Arima Untuk Peramalan Jumlah Klaim Program Jaminan Hari Tua Pada Bpjs Ketenagakerjaan Kota Langsa. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(4), 491–500. https://doi.org/10.30598/barekengvol14iss4pp491-500
Suryani, R. V., Rismawan, T., & Ruslianto, I. (2023). Penerapan Metode Arima Untuk Memprediksi Pemakaian Bandwidth Di Universitas Tanjungpura. Coding Jurnal Komputer Dan Aplikasi, 10(03), 421. https://doi.org/10.26418/coding.v10i03.56016
Widiyanto, M. H., Mayasari, R., & Garno, G. (2023). Implementasi Time Series Pada Data Penjualan Di Gaikindo Menggunakan Algoritma Seasonal Arima. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1501–1506. https://doi.org/10.36040/jati.v7i3.6879