Transethosomes as Vesicular Drug Delivery : a Modified Form of Ethosomes and Transfersomes

##plugins.themes.academic_pro.article.main##

Meiti Rosmiati
Dewi Wulantresna
Rida Emelia

Abstract

Liposomal vesicle formulations can be classified into two categories, namely rigid hard vesicles such as liposomes and elastic vesicles such as transferosome. One of the shortcomings of conventional liposomes is their permeation strength in the stratum corneum, so that in later generations liposomes are designed to be able to better overcome these obstacles. Deformable liposomes, also known as transfersomes, are liposomes that contain edge activators/surfactants. The combination of phospolipids with membrane softening agents allow the transfersome to penetrate pores that are five times smaller than their own diameter, even after it passes through small pores. Ethosomes are liposomes with modified ethanol that act as reservoir systems and offer the continuous delivery of drugs to the desired site. The high concentration of ethanol content in the manufacture of ethosome systems makes this system different from other vesicle systems, because the ethanol content will interfere with the double layer of skin lipids and thus increase the ability of vesicles to penetrate into the stratum corneum. Phospholipids in ethosomes serve as vesicular-forming components. Phospholipids are also reported to act synergistically with ethanol to improve drug permeation in ethosome formulations. Transethosomes are ethanol-based lipid vesicular systems resulting from modifications of ethosome and transfersome systems that can increase penetration in the skin. It is a new generation of the ethosome system which developed by increasing the flexibility of vesicles by redistributing edge activators and lipids on the skin. The mechanism of action of transethosomes is a combination of advantages of both transferosome systems and ethosomes.

##plugins.themes.academic_pro.article.details##

How to Cite
Rosmiati, M., Wulantresna, D. and Emelia, R. (2025) “Transethosomes as Vesicular Drug Delivery : a Modified Form of Ethosomes and Transfersomes”, Ranah Research : Journal of Multidisciplinary Research and Development, 7(3), pp. 2230-2245. doi: 10.38035/rrj.v7i3.1432.

References

Abdulbaqi, I.M., Darwis, Y., Khan N.A.K., Assi, R.A., dan Khan, A.A., (2016): Ethosomal Nanocarriers : The Impact of Constituents and Formulation Techniques on Ethosomal Properties, In Vivo Studies, and Clinical Trials, Internasional Journal of Nanomedicine, 11, 2279 - 2304.
Amnuaikit, T., Limsuwan, T., Khongkow, P., & Boonme, P. (2018). Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian Journal of Pharmaceutical Sciences, 13(5), 472–484. https://doi.org/10.1016/j.ajps.2018.02.004
Ansari, S. A., Qadir, A., Warsi, M. H., Mujeeb, M., Aqil, M., Mir, S. R., & Sharma, S. (2021). Ethosomes-based gel formulation of karanjin for treatment of acne vulgaris: in vitro investigations and preclinical assessment. 3 Biotech, 11(11), 1–14. https://doi.org/10.1007/s13205-021-02978-3
Anwar, E., Utami, T. D., & Ramadon, D. (2017). Transfersomal gel containing green tea (Camellia sinensis L. kuntze) leaves extract: Increasing in vitro penetration. Asian Journal of Pharmaceutical and Clinical Research, 10(8), 294–298. https://doi.org/10.22159/ajpcr.2017.v10i8.19124
Apolinário, A. C., Hauschke, L., Nunes, J. R., Lourenço, F. R., & Lopes, L. B. (2021). Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623(February). https://doi.org/10.1016/j.colsurfa.2021.126745
Ascenso, A., Raposo, S., Batista, C., Cardoso, P., Mendes, T., Praca, F.G., Bentley, M.V.L.B., dan Simoes, S., (2015): Development, characterization, and skin delivery studies of related Ultra Deformable Vesicles: transfersomes, ethosomes, and transethosomes, Int J Nanomedicine, 10: 5837-5851.
Balata, G. F., Faisal, M. M., Elghamry, H. A., & Sabry, S. A. (2020). Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. Journal of Drug Delivery Science and Technology, 60(July), 101921. https://doi.org/10.1016/j.jddst.2020.101921
Chaerunisaa, A.Y., Dewi, M.K., Sriwidodo, Joni, I.M. Dwiyana, R F., . 2022. Development of Cathelicidin In Liposome Carrier Using Thin Layer Hydration Method. Int J App Pharm, Vol 14, Issue 4, 2022, 178-185
Costanzo, M., Esposito, E., Sguizzato, M., Lacavalla, M. A., Drechsler, M., Valacchi, G., Zancanaro, C., & Malatesta, M. (2021). Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery. International Journal of Molecular Sciences, 22(10). https://doi.org/10.3390/ijms22105341
Fernández-García, R., Lalatsa, A., Statts, L., Bolás-Fernández, F., Ballesteros, M. P., & Serrano, D. R. (2020). Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. International
Ferrara, F., Benedusi, M., Sguizzato, M., Cortesi, R., Baldisserotto, A., Buzzi, R., Valacchi, G., & Esposito, E. (2022). Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics, 14(5), 1038. https://doi.org/10.3390/pharmaceutics14051038
G.M.M. El Maghraby, A.C. Williams, B.W. Barry, 2001. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes J Pharm Pharmacol. 2001 Oct;53(10):1311-22. doi: 10.1211/0022357011777800.
Garg, V., Singh, H., Bimbrawh, S., Singh, S. K., Gulati, M., Vaidya, Y., & Kaur, P. (2016). Ethosomes and Transfersomes: Principles, Perspectives and Practices. Current Drug Delivery, 14(5), 613–633. https://doi.org/10.2174/1567201813666160520114436
Grippaudo, F. R., & Di Russo, P. P. (2016). Effects of topical application of B-Resorcinol and Glycyrrhetinic acid monotherapy and in combination with fractional CO2 laser treatment for benign hand hyperpigmentation treatment. Journal of Cosmetic Dermatology, 15(4), 413–419. https://doi.org/10.1111/jocd.12241
Guo, T., Lu, J., Fan, Y., Zhang, Y., Yin, S., Sha, X., & Feng, N. (2021). TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. International Journal of Pharmaceutics, 604, 120762. https://doi.org/10.1016/j.ijpharm.2021.120762
Gupta, V., & Joshi, N. K. (2022). Journal of Drug Delivery and Therapeutics Formulation , Development and Evaluation of Ketoprofen Loaded Transethosomes Gel. 12(1), 86–90.
Hallan, S. S., Sguizzato, M., Mariani, P., Cortesi, R., Huang, N., Simelière, F., Marchetti, N., Drechsler, M., Ruzgas, T., & Esposito, E. (2020). Design and characterization of ethosomes for transdermal delivery of caffeic acid. Pharmaceutics, 12(8), 1–18. https://doi.org/10.3390/pharmaceutics12080740
Honeywell-Nguyen PL & Bouwstra JA. 2003. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: A suggested mechanism of action. J Control Release86: 145-156 10.1016/S0168-3659(02)00415-7
Ita, K., (2016): Current status of ethosomes and elastic liposomes in dermal and transdermal drug delivery, Curr Pharm, Press Print.
Jain, S., Patel, N., Shah, M. K., Khatri, P., & Vora, N. (2017). Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. Journal of Pharmaceutical Sciences, 106(2), 423–445. https://doi.org/10.1016/j.xphs.2016.10.001
Jain, S., Tiwary, A.K, Sapra, B., dan Jain, N.K., (2007): Formulation and evaluation of ethosomes for transdermal delivery of lamivudine, AAPS Pharm Sci Tech, 8(4), E111.
Kassem, M. A., Aboul-Einien, M. H., & El Taweel, M. M. (2018). Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability. AAPS PharmSciTech, 19(5), 2155–2173.
Kumar Mishra, K., Deep Kaur, C., Verma, S., Kumar Sahu, A., Kumar Dash, D., Kashyap, P., & Prasad Mishra, S. (2019). Transethosomes and Nanoethosomes: Recent Approach on Transdermal Drug Delivery System. Nanomedicines. https://doi.org/10.5772/intechopen.81152
Kumar, L., & Utreja, P. (2019). Formulation and Characterization of Transethosomes for Enhanced Transdermal Delivery of Propranolol Hydrochloride. Micro and Nanosystems, 12(1), 38–47. https://doi.org/10.2174/1876402911666190603093550
Kumar, L., & Utreja, P. (2019). Formulation and Characterization of Transethosomes for Enhanced Transdermal Delivery of Propranolol Hydrochloride. Micro and Nanosystems, 12(1), 38–47. https://doi.org/10.2174/1876402911666190603093550
Kumar, L., Verma, S., Singh, K., Prasad, D. N., & Jain, A. K. (2016). Ethanol Based Vesicular Carriers in Transdermal Drug Delivery: Nanoethosomes and Transethosomes in Focus. NanoWorld Journal, 2(3), 41–51. https://doi.org/10.17756/nwj.2016-030
Kumar, L., Verma, S., Singh, K., Prasad, D., dan Jain, A., (2016): Ethanol based vesicular carriers in Transdermal Drug Delivery : Nanoethosomes and Transethosomes in Focus, Nano World Journal, 30: 41-51.
Kumar, N., Dubey, A., Mishra, A., & Tiwari, P. (2020). Ethosomes: A Novel Approach in Transdermal Drug Delivery System. International Journal of Pharmacy & Life Sciences, 11(5), 6598–6608. https://doi.org/10.5958/0974-360X.2020.00188.2
Li, J., Duan, N., Song, S., Nie, D., Yu, M., Wang, J., Xi, Z., Li, J., Sheng, Y., Xu, C., Wei, Y., & Gan, Y. (2021). Transfersomes improved delivery of ascorbic palmitate into the viable epidermis for enhanced treatment of melasma. International Journal of Pharmaceutics, 608(August), 121059. https://doi.org/10.1016/j.ijpharm.2021.121059
Magdy, S., Alaaeldin, E., Fathalla, Z., Alaaeldin, R., Elrehany, M., Saber, E. A., Abdel-Aziz, R. T., & Mansour, H. F. (2022). Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation. International Journal of Pharmaceutics, 621, 121781. https://doi.org/10.1016/j.ijpharm.2022.121781
Nainwal, N., Jawla, S., Singh, R., & Saharan, V. A. (2019). Transdermal applications of ethosomes–a detailed review. Journal of Liposome Research, 29(2), 103–113. https://doi.org/10.1080/08982104.2018.1517160
Nair, R. S., Billa, N., Leong, C. O., & Morris, A. P. (2021). An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M® membrane and excised human skin. Pharmaceutical Development and Technology, 26(2), 243–251. https://doi.org/10.1080/10837450.2020.186008731.
Nayak, D., Thathapudi, N. C., Ashe, S., & Nayak, B. (2021). Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. International Journal of Pharmaceutics, 596(August 2020), 120265. https://doi.org/10.1016/j.ijpharm.2021.12026536.
Negi, L.M., Garg, A.K., dan Chauhan, M., (2009): Ultradeformable Vesicles: Concept and Execution Pharma Times, 41(9):11–14.
Omar, M. M., Hasan, O. A., & El Sisi, A. M. (2019). Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. International Journal of Nanomedicine, 14, 1551–1562. https://doi.org/10.2147/IJN.S201356
Opatha, S. A. T., Titapiwatanakun, V., & Chutoprapat, R. (2020). Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 12(9), 1–23. https://doi.org/10.3390/pharmaceutics12090855
Paiva-Santos, A. C., Silva, A. L., Guerra, C., Peixoto, D., Pereira-Silva, M., Zeinali, M., Mascarenhas-Melo, F., Castro, R., & Veiga, F. (2021). Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharmaceutical Research, 947–970. https://doi.org/10.1007/s11095-021-03053-5
Pirvu, C.D., Hlevca, C., Ortan, A., dan Prisada, R., (2010): Elastic Vesikel as Drugs Carriers Through The Skin, Farmacia, 58 (2).
Qushawy, M., Nasr, A., Abd-Alhaseeb, M., & Swidan, S. (2018). Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics, 10(1). https://doi.org/10.3390/pharmaceutics10010026
Rai, S., Pandey, V., & Rai, G. (2017). Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Reviews & Experiments, 8(1), 1325708. https://doi.org/10.1080/20022727.2017.1325708
Rajan, R., Soma J., Mukund, V.P.B., dan Vasudevan, D.T., (2011): Transfersomes-A vesicular transdermal delivery system for enhanced drug permeation, Journal of Adv.Pahrmaceutical Technology and Research, 2, 3.
Ramezani, V., Honarvar, M., Seyedabadi, M., Karimollah, A., Ranjbar, A. M., & Hashemi, M. (2018). Formulation and optimization of transfersome containing minoxidil and caffeine. Journal of Drug Delivery Science and Technology, 44, 129–135. https://doi.org/10.1016/j.jddst.2017.12.003
Sarhan, O., Abdel-Ghany, M., Abdel-Hamid, M., & Cairo, I. (2020). Development, evaluation and application of Transfersomal Green tea extract (Camellia sinensis) formulations. Sdippress.Com, 02(02). https://www.sdippress.com/volume/AJMPR/02/01/development-evaluation-and-application-of-transfersomal-green-tea-extract-camellia-sinensis-formulations-5e5a41d40575d.pdf
Sguizzato, M., Ferrara, F., Hallan, S. S., Baldisserotto, A., Drechsler, M., Malatesta, M., Costanzo, M., Cortesi, R., Puglia, C., Valacchi, G., & Esposito, E. (2021). Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants, 10(5). https://doi.org/10.3390/antiox10050768
Shaji, J., dan Bajaj, R., (2018): Transethosomes : A New Prospect For Enhanced Transdermal Delivery, International Journal of Pharmaceutical Science ad Research, 9(7): 2681-2685.
Song, C.K., Balakrishnan, P., Shim, C.K., Chung, S.J., Chong S, dan Kim, D.D., (2012): A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation, Colloids and Surfaces B: Biointerfaces, 92, 299-301.
Sudhakar CK., Upadhyay N., Verma A., Jain A., Charyulu RN., dan Jain S., (2015): Nanomedicine and Tissue Engineering, editor oleh Thomas S., Grohens Y., Ninan M., Nanotechnology Applications for Tissue Engineering, William Andrew Publishing, Oxford, 1-19.
Sudhakar, K., Fuloria, S., Subramaniyan, V., Sathasivam, K. V., Azad, A. K., Swain, S. S., Sekar, M., Karupiah, S., Porwal, O., Sahoo, A., Meenakshi, D. U., Sharma, V. K., Jain, S., Charyulu, R. N., & Fuloria, N. K. (2021). Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials, 11(10), 1–20. https://doi.org/10.3390/nano11102557
Tawfeek, H. M., Abdellatif, A. A. H., Abdel-Aleem, J. A., Hassan, Y. A., & Fathalla, D. (2020). Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. Journal of Drug Delivery Science and Technology, 56(November 2019), 101540. https://doi.org/10.1016/j.jddst.2020.101540
Teaima, M.H. Gebril, M.I. Abd Allah, F.I. , El-Nabarawi, M.A. 2022, Niosomes Versus Proniosomes as Promising Drug Delivery Systems in Treatment of Diabetes Mellitus, Int J App Pharm, Vol 14, Issue 5, 2022, 32-40
Thakur, N., Jain, P., & Jain, V. (2018). Formulation Development and Evaluation of Transferosomal Gel. Journal of Drug Delivery and Therapeutics, 8(5), 168–177. https://doi.org/10.22270/jddt.v8i5.1826
Yusuf, N.A., Abdassah, M., Mauludin, R., Joni, I. M., Chaerunisaa, A. Y., 2021. Transfersome: a vesicular drug delivery with enhanced permeation, Journal of Advanced Pharmacy Education & Research 11(3):48-57. https://doi.org/10.51847/vrYnt7vHhp