Nail Disease Classification Using Graph Attention Network (GAT) and Resnet

##plugins.themes.academic_pro.article.main##

Indriani Indriani

Abstract

Nail diseases can serve as critical indicators of systemic health issues, making their early detection and classification essential for effective diagnosis and treatment. This study integrates deep learning and graph-based learning to classify nail diseases, utilizing ResNet for feature extraction and Graph Neural Networks (GNNs) for relational learning. A dataset comprising multiple nail disease categories, including Acral Lentiginous Melanoma, Onychogryphosis, Clubbing, Pitting, Blue Finger, and Healthy Nails, was utilized. The ResNet model extracts meaningful feature representations, which are then structured as a graph to capture inter-class relationships using a Graph Attention Network (GAT).  Cosine similarity is employed to construct the graph edges to improve connectivity between samples, ensuring that nodes with high feature similarity are more likely to be connected. This approach enhances learning by leveraging relationships between visually similar nail disease patterns. Experimental results demonstrate high classification performance, achieving an accuracy of 0.8791 (88%). This research highlights the effectiveness of combining deep learning with graph-based learning for automated nail disease classification, paving the way for more robust AI-assisted diagnostic tools in dermatology.

##plugins.themes.academic_pro.article.details##

How to Cite
Indriani, I. (2025) “Nail Disease Classification Using Graph Attention Network (GAT) and Resnet”, Ranah Research : Journal of Multidisciplinary Research and Development, 7(4), pp. 2522-2529. doi: 10.38035/rrj.v7i4.1534.

References

Alzahrani, D. A., Alhajri, R. R., AlAli, N. A., Alfaraj, M. L., Alotaibi, D. S., & Alahmadi, A. Y. (2023). A Deep Hybrid Learning Approach For Nail Diseases Classification. 2023 3rd International Conference on Computing and Information Technology (ICCIT), 325–333. https://doi.org/10.1109/ICCIT58132.2023.10273947
DermNet. (2025). [Health Professional]. DermNet All about the Skin. https://dermnetnz.org/
Gupta, A. K., Stec, N., Summerbell, R. C., Shear, N. H., Piguet, V., Tosti, A., & Piraccini, B. M. (2020). Onychomycosis: A review. Journal of the European Academy of Dermatology and Venereology, 34(9), 1972–1990. https://doi.org/10.1111/jdv.16394
Gurav, N. (2024). Nail Disease Detection (Version 1) [Dataset]. https://www.kaggle.com/datasets/nikhilgurav21/nail-disease-detection-dataset
Hamim, Md. A., Ul Haque, A., Ray, K., & Hasan, Md. S. (2023). Multiple Nail-Disease Classification Based on Machine Vision Using Transfer Learning Approach. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–8. https://doi.org/10.1109/ICCCNT56998.2023.10306501
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition (No. arXiv:1512.03385). arXiv. https://doi.org/10.48550/arXiv.1512.03385
Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks (No. arXiv:1609.02907). arXiv. https://doi.org/10.48550/arXiv.1609.02907
Shandilya, G., Gupta, S., Bharany, S., Rehman, A. U., Kaur, U., Som, H. M., & Hussen, S. (2024). Autonomous detection of nail disorders using a hybrid capsule CNN: A novel deep learning approach for early diagnosis. BMC Medical Informatics and Decision Making, 24(1), 414. https://doi.org/10.1186/s12911-024-02840-5
Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition. Elsevier.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph Attention Networks (No. arXiv:1710.10903). arXiv. https://doi.org/10.48550/arXiv.1710.10903
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386
Yamac, S. A., Kuyucuoglu, O., Koseoglu, S. B., & Ulukaya, S. (2022). Deep Learning Based Classification of Human Nail Diseases Using Color Nail Images. 2022 45th International Conference on Telecommunications and Signal Processing (TSP), 196–199. https://doi.org/10.1109/TSP55681.2022.9851300
Yilmaz, A., Goktay, F., Varol, R., Gencoglan, G., & Uvet, H. (2022). Deep Convolutional Neural Networks for Onychomycosis Detection (No. arXiv:2106.16139). arXiv. https://doi.org/10.48550/arXiv.2106.16139