Analisis Sentimen Pengguna Aplikasi STEAM dengan Algoritma Naive Bayes
##plugins.themes.academic_pro.article.main##
Published
Sep 20, 2025
Abstract
Steam is a widely used digital game distribution platform with millions of users worldwide. The abundance of user reviews on the Google Play Store serves as a valuable source for analyzing user perceptions and satisfaction regarding the application. Therefore, this study performs sentiment analysis to understand user opinions about the Steam app. This research employs the Naive Bayes algorithm to classify user reviews into two sentiment categories: positive and negative. The process begins with collecting user reviews from the Google Play Store using web scraping techniques. The data then undergo preprocessing steps such as case folding, cleaning, tokenization, stopwords removal, and stemming to improve its quality. TF-IDF is used for feature extraction from the review texts, which are then used as input for the Naive Bayes Classifier model. The model is trained with training data and evaluated with testing data that has been previously split. Model performance is evaluated using a Confusion Matrix and metrics such as accuracy, precision, recall, and F1-score. The results show that the Naive Bayes model achieves an average accuracy of 84% in classifying sentiment. These findings indicate that the method is effective in understanding user opinions about the Steam application. This research is expected to provide insights for developers to improve application quality based on user feedback
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Ekrut. (2025, Januari 7). Apa itu Steam? Ekrut Media. https://www.ekrut.com/media/apa-itu-steam
Esairina, A. (2021). Memahami confusion matrix, accuracy, precision, recall, specificity, dan F1-score. Medium. https://esairina.medium.com/memahami-confusion-matrix-accuracy-precision-recall-specificity-dan-f1-score-610d4f0db7cf
Gunawan, B., Pratiwi, H. S., & Pratama, E. E. (2018). Sistem analisis sentimen pada ulasan produk menggunakan metode Naive Bayes. Jurnal Edukasi dan Penelitian Informatika, 4(2), 113–118.
Hasibuan, E., & Heriyanto, E. A. (2022). Analisis sentimen pada ulasan aplikasi Amazon Shopping di Google Play Store menggunakan Naive Bayes Classifier. Jurnal Teknik dan Sains, 1(3), 13–24. https://doi.org/10.56127/jts.v1i3.434
Mastan, I. A., & Toni, Y. (2020). Analisis sentimen terhadap tempat kuliner Ayam Gedebuk dari komentar pengunjung dengan menggunakan metode Naïve Bayes Classifier. JBASE - Journal of Business and Audit Information Systems, 3(1). https://doi.org/10.30813/jbase.v3i1.2062
Nadia, P. H., Wahyuni, S. S., & Sari, A. P. (2024). Penerapan Naive Bayes Classifier untuk analisis sentimen ulasan pelanggan pada Frenz Accessories Handphone. JAMASTIKA, 3(2), 19–29. https://doi.org/10.35134/jamastika.v3i2.330
Putri, K. S., Setiawan, I. R., & Pambudi, A. (2023). Analisis sentimen terhadap brand skincare lokal menggunakan Naïve Bayes Classifier. Technologia, 14(3), 227–232.
Sudrajat, M. R., & Zakariyah, M. (2024). Penerapan natural language processing dan machine learning untuk prediksi stres siswa SMA berdasarkan analisis teks. BISNIS & Teknologi Informasi (BiTS), 6(3). https://doi.org/10.47065/bits.v6i3.6180
Takdirillah, R. (n.d.). Apa itu machine learning? Beserta pengertian dan cara kerjanya. Dicoding. https://www.dicoding.com/blog/machine-learning-adalah/
Tannady, H., Andry, J. F., & Honni, H. (2024). Analisis big data Spotify dengan metode data mining. JBASE - Journal of Business and Audit Information Systems, 7(2). https://doi.org/10.30813/jbase.v7i2.6261
Tempo. (n.d.). Apa itu platform Steam? Tempo.co. https://www.tempo.co/digital/apa-itu-platform-steam--314411