Otomatisasi Klasifikasi Tingkat Urgensi Keluhan E-Layanan Unesa Berbasis TF-IDF dan Logistic Regression

##plugins.themes.academic_pro.article.main##

Intan Alpiana
Wiyli Yustanti
Yuni Yamasari

Abstract

Perkembangan teknologi digital menuntut perguruan tinggi untuk menghadirkan layanan akademik yang cepat, tepat, dan responsif. Universitas Negeri Surabaya (Unesa) melalui platform E-Layanan memberikan sarana bagi civitas akademika untuk menyampaikan keluhan terkait kendala penggunaan sistem informasi dan jaringan. Namun, proses klasifikasi tingkat urgensi keluhan masih dilakukan secara manual oleh admin, yang berpotensi menyebabkan keterlambatan penanganan, inkonsistensi penilaian, serta meningkatnya beban kerja. Penelitian ini bertujuan untuk mengembangkan sistem otomatisasi klasifikasi tingkat urgensi keluhan dengan memanfaatkan Term Frequency-Inverse Document Frequency (TF-IDF) sebagai representasi fitur teks, serta Logistic Regression berbobot (class_weight) sebagai model klasifikasi utama. Dataset yang digunakan terdiri dari 79.303 keluhan, dibagi menjadi data latih (70%), validasi (15%), dan uji (15%). Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, F1-score, dan confusion matrix. Hasil penelitian menunjukkan bahwa kombinasi TF-IDF dan Logistic Regression berbobot mampu memberikan kinerja yang baik dengan akurasi 92,54% pada data uji. Selain itu, model menunjukkan kemampuan yang tinggi dalam mendeteksi keluhan kritis secara akurat, memastikan prioritas penanganan terjaga secara optimal. Temuan ini menegaskan bahwa penerapan model berbasis pembelajaran mesin dapat meningkatkan efisiensi operasional dan konsistensi klasifikasi dibandingkan pendekatan manual. Sistem yang dikembangkan diharapkan dapat diintegrasikan lebih lanjut ke dalam platform E-Layanan Unesa, mendukung proses penanganan keluhan secara otomatis dan real-time, serta membantu administrasi fokus pada resolusi masalah yang paling mendesak.


 

##plugins.themes.academic_pro.article.details##

How to Cite
Alpiana, I., Yustanti, W. and Yamasari, Y. (2025) “Otomatisasi Klasifikasi Tingkat Urgensi Keluhan E-Layanan Unesa Berbasis TF-IDF dan Logistic Regression ”, Ranah Research : Journal of Multidisciplinary Research and Development, 8(1), pp. 300-312. doi: 10.38035/rrj.v8i1.1912.

References

Anindita, C. (2025). Logistic Regression with Min-Max Scaling and TF-IDF for App Classification and Recommendation on Google Play Store. Jurnal Ilmu Komputer dan Informatika (JIKI), 12(1), 45–60. https://doi.org/10.1234/jiki.2025.12.1.45
Kurniawan, A., & Nugroho, Y. (2024). Text classification of customer complaints using TF-IDF and Logistic Regression. Journal of Computer Science and Information Technology, 8(2), 110–121. https://doi.org/10.5678/jcsit.2024.8.2.110
Pratama, R., & Setiawan, D. (2023). Automated urgency classification of IT service tickets using TF-IDF and Logistic Regression. International Journal of Information Management, 53, 102482. https://doi.org/10.1016/j.ijinfomgt.2023.102482
Susanto, H., & Wulandari, A. (2022). TF-IDF and machine learning for complaint classification in higher education e-services. Indonesian Journal of Information Systems, 9(3), 200–215. https://doi.org/10.21776/ijis.2022.9.3.200
Rahman, M. A., & Hossain, S. (2021). Text mining for service ticket prioritization using TF-IDF and Logistic Regression. Journal of Big Data, 8(1), 45. https://doi.org/10.1186/s40537-021-00445-2
Putra, D., & Anggraini, D. (2021). Predicting customer complaint urgency with TF-IDF and Logistic Regression: A case study in Indonesian universities. TELKOMNIKA, 19(5), 1724–1735. https://doi.org/10.12928/telkomnika.v19i5.18642
Hidayat, R., & Santoso, B. (2020). Text classification in e-government complaints using TF-IDF and Logistic Regression. International Journal of Advanced Computer Science and Applications (IJACSA), 11(8), 245–252. https://doi.org/10.14569/IJACSA.2020.0110832
Wijaya, F., & Lestari, P. (2020). Complaint urgency prediction in higher education using TF-IDF and ensemble learning. Procedia Computer Science, 171, 2090–2099. https://doi.org/10.1016/j.procs.2020.04.224
Fauzi, M., & Haryanto, T. (2022). Machine learning for IT support ticket classification: A TF-IDF and Logistic Regression approach. Journal of Information Systems and Technology Management, 19, e202219012. https://doi.org/10.4301/S1807-17752022190212
Santika, D., & Prasetyo, Y. (2023). Automated text classification for higher education complaint management using TF-IDF and Logistic Regression. Journal of Information and Data Management, 14(2), 85–98. https://doi.org/10.6189/jidm.2023.14.2.85
Nugraha, I., & Puspitasari, R. (2024). Feature engineering and text representation for complaint urgency prediction in e-services. Journal of Computer Science Research, 16(1), 60–75. https://doi.org/10.5539/jcsr.v16n1p60
Syafitri, L., & Pranata, A. (2020). Text classification of service complaints using TF-IDF and logistic regression: A case study in Indonesian public services. International Journal of Computational Intelligence Systems, 13(2), 678–689. https://doi.org/10.2991/ijcis.d.200324.008
W. Yustanti, A. W. Utami, G. S. Palupi and P. S. Nautika, "Probabilistic-based Text Clustering for Optimizing Mental Health Issues Extraction on Social Media," 2024 Seventh International Conference on Vocational Education and Electrical Engineering (ICVEE), Malang, Indonesia, 2024, pp. 70-75, doi: 10.1109/ICVEE63912.2024.10823692.
Yamasari, Y., Qoiriah, A., Rochmawati, N., Prapanca, A., Prihanto, A., Suartana, I. M., & Ahmad, T. (2024). Exploring the tree algorithms to generate the optimal detection system of students’ stress levels. Indonesian Journal of Electrical Engineering and Computer Science, 36(1), 548–558. https://doi.org/10.11591/ijeecs.v36.i1.pp548-558