Efektifitas Variasi Plat 4//4 dan 5//5 Elektroda Al/Cu terhadap Kinerja Generator Penghasil Gas Hidrogen
##plugins.themes.academic_pro.article.main##
Published
Feb 14, 2021
Abstract
This study aims to compare the effectiveness of plate variations 4//4 and 5//5 Al/Cu on the performance of hydrogen gas generators. The method used is electrolysis using electrolytes H2O and CH3COONa. The result obtained is that the 4/4 Al/Cu electrode plate variation is more effective in producing hydrogen gas during electrolysis than the 5/5 al/cu electrode plate variation. The 4/4 plate variation produces hydrogen gas with 8 ml and 102 ml of H2O and CH3COONa electrolytes, respectively. The use of electrolytes in the form of salt and variations of the electrode plates during the electrolysis process affect the yield of hydrogen gas produced using a hydrogen generator.
##plugins.themes.academic_pro.article.details##
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Farsak, Murat and Gülfeza Kardaş. (2018). “Effect of Current Change on Iron-Copper-Nickel Coating on Nickel Foam for Hydrogen Production.” International Journal of Hydrogen Energy 6–11.
Gonzales, Ralph Rolly, Jun Seok Kim, and Sang Hyoun Kim. (2018). “Optimization of Dilute Acid and Enzymatic Hydrolysis for Dark Fermentative Hydrogen Production from the Empty Fruit Bunch of Oil Palm.” International Journal of Hydrogen Energy 1–12.
Ismail, Tamer M., Khaled Ramzy, M. N. Abelwhab, Basem E. Elnaghi, and M. Abd El-salam. (2018). “Performance of Hybrid Compression Ignition Engine Using Hydroxy (HHO) from Dry Cell.” Energy Conversion and Management 155(September 2017):287–300.
Kova, Ankica, Doria Marciu, and Luka Budin. (2018). “ScienceDirect Solar Hydrogen Production via Alkaline Water Electrolysis.” (xxxx).
Li, Xin, Jiaguo Yu, Jingxiang Low, Yueping Fang, Jing Xiao, and Xiaobo Chen. (2015). “Engineering Heterogeneous Semiconductors for Solar Water Splitting.” Journal of Materials Chemistry A 3(6):2485–2534.
Tentu, Rama Devi and Suddhasatwa Basu. (2017). “Photocatalytic Water Splitting for Hydrogen Production.” Current Opinion in Electrochemistry 5(1):56–62.
Vincent, Immanuel, Bokkyu Choi, and Masateru Nakoji. (2018). “ScienceDirect Pulsed Current Water Splitting Electrochemical Cycle for Hydrogen Production.” International Journal of Hydrogen Energy 1–9.
Yuan, Yu-Peng., Lin-Wei Ruan., James Barber., Say Chye Joachim Loo., dan Can Xue. (2014). “Hetero-Nanostructured Suspended Photocatalysts for Solar-to-Fuel Conversion”. Energy Environ. Sci
Gahleitner, Gerda. (2013). "Hydrogen from Renewable Electricity: An Internationational Review of Power-to-Gas Pilot Plants for Stationary Applications." International Journal of Hydrogen Energy 38(5):2039-61
C, Greiner MT, et al. (2016). The electronic structure of iridium oxide electrodes active in water splitting. Physical chemistry chemical physics:PCC 18:2292-6
Mersch D, Lee CY, Zhang JZ, Brinkert K, Fontecilla-Camps JC, et al. (2015). Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting. Journal of the American Chemical Society 137:8541-9
Wei, Q., Yang, Y., Liu, H., Hou, J., Liu, M., Cao, F., & Zhao, L. (2018). Experimental study on the direct solar photocatalytic water splitting for hydrogen production using concentrators uniform surface. International Journal of Hydrogen Energy,43(30),1374513753
de Fátima Palhares, DDA, Vieira, LGM, and Damasceno, JJR (2018). Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use. International Journal of Hydrogen Energy,43(9),47464753
Zainul, R., & Isara, L. P. (2019). Preparation of Dye Sensitized Solar Cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation. In Journal of Physics: Conference Series (Vol. 1185, No.1, p. 012021). IOP Publishing.
Yuan, Yu-Peng., Lin-Wei Ruan., James Barber., Say Chye Joachim Loo., dan Can Xue. (2014). “Hetero-Nanostructured Suspended Photocatalysts for Solar-to-Fuel Conversion”. Energy Environ. Sci
Vogel. (1990). Analisis Anorganik Kualitatif Makro dan Semimikro. Jakarta : PT. Kalman Media Pustaka.
Tentu, Rama Devi and Suddhasatwa Basu. (2017). “Photocatalytic Water Splitting for Hydrogen Production.” Current Opinion in Electrochemistry 5(1):56–62.
Vincent, Immanuel, Bokkyu Choi, and Masateru Nakoji. (2018). “ScienceDirect Pulsed Current Water Splitting Electrochemical Cycle for Hydrogen Production.” International Journal of Hydrogen Energy 1–9.
R. Zainul, A. Alif, H. Aziz, and S. Arief. (2015). Research Article Photoelectrosplitting water for hydrogen production using illumination of indoor lights. Journal of Chemical and Pharmatical Research, vol. 7, no. 11, pp. 57-67, 2015
Rashid, Mamoon, Mohammed K. Al Mesfer, Hamid Naseem, and Mohd Danish. (2015). “Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis , PEM Water Electrolysis and High Temperature Water Electrolysis.” International Journal of Engineering and Advanced Technology 4(3):80–93.
Rivai Harrizul. (1995). Asas Pemeriksaan Kimia. Jakarta: Penerbit UI Press.
Roihatin, Anis. (2015). “ANALISIS PRODUKTIVITAS GAS HHO MENGGUNAKAN ELEKTROLISER TIPE WET CELL DENGAN VARIASI LUAS PENAMPANG DAN KONSENTRASI KOH.” (1974):133–38.
Svehla,G. (1985). VOGEL I : Buku Teks Analisis Kualitatif Makro dan Semimikro. Jakarta: P.T. Kalman Media Pustaka.
Dody Wiryawan; Denny Widhiyanuriyawan; Nurkholis Hamidi. (2013). Pengaruh Variasi Arus Listrik Terhadap Produksi Brown’s Gas Pada Elektroliser. Malang: Universitas Brawijaya.
Farsak, Murat and Gülfeza Kardaş. (2018). “Effect of Current Change on Iron-Copper-Nickel Coating on Nickel Foam for Hydrogen Production.” International Journal of Hydrogen Energy 6–11.
Gahleitner, Gerda. (2013). "Hydrogen from Renewable Electricity: An Internationational Review of Power-to-Gas Pilot Plants for Stationary Applications." International Journal of Hydrogen Energy 38(5):2039-61
Gonzales, Ralph Rolly, Jun Seok Kim, and Sang Hyoun Kim. (2018). “Optimization of Dilute Acid and Enzymatic Hydrolysis for Dark Fermentative Hydrogen Production from the Empty Fruit Bunch of Oil Palm.” International Journal of Hydrogen Energy 1–12.
Ismail, Tamer M., Khaled Ramzy, M. N. Abelwhab, Basem E. Elnaghi, and M. Abd El-salam. (2018). “Performance of Hybrid Compression Ignition Engine Using Hydroxy (HHO) from Dry Cell.” Energy Conversion and Management 155(September 2017):287–300.
Keenan, Charles W. (1984). Kimia untuk Universitas. Jakarta: Erlangga.
Kova, Ankica, Doria Marciu, and Luka Budin. (2018). “ScienceDirect Solar Hydrogen Production via Alkaline Water Electrolysis.” (xxxx).
R. Zainul, S. Resmi, and U. Negeri. (2018). “Studi Dinamika Molekular dan Kinetika Reaksi pada Pembelahan Molekul Air untuk Produksi Gas Hidrogen,” no. August.
R. Zainul, A. Alif, H. Aziz, and S. Arief. (2015). Research Article Photoelectrosplitting water for hydrogen production using illumination of indoor lights. Journal of Chemical and Pharmaceutical Research, vol. 7, no. 11, pp. 57–67, 2015.
Yulis, R., R. Zainul, and M. Mawardi. (2019). Effect of natrium sulphate concentration on indoor lights photovoltaic performance. Journal of Physics: Conference Series. IOP Publishing.
Zainul, R. and L. Isara. (2019). Preparation of Dye Sensitized Solar Cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation. Journal of Physics: Conference Series. IOP Publishing.
Li, Xin, Jiaguo Yu, Jingxiang Low, Yueping Fang, Jing Xiao, and Xiaobo Chen. (2015). “Engineering Heterogeneous Semiconductors for Solar Water Splitting.” Journal of Materials Chemistry A 3(6):2485–2534.
Liao, Chi-Hung, Chao-Wei Huang, and Jeffrey C. S. Wu. (2012). “Hydrogen Production from Semiconductor-Based Photocatalysis via Water Splitting.” Catalysts 2(4):490–516.
Marini, Stefania, Paolo Salvi, Paolo Nelli, Rachele Pesenti, Marco Villa, Mario Berrettoni, Giovanni Zangari, and Yohannes Kiros. (2012). “Electrochimica Acta Advanced Alkaline Water Electrolysis.” Electrochimica Acta 82:384–91.
Mun, Leonardo De Silva, Alain Bergel, and Damien Fe. (2010). “Hydrogen Production by Electrolysis of a Phosphate Solution on a Stainless Steel Cathode.” 5:2–9.
Nguyen, Van-Huy and Jeffrey C. S. Wu. (2018). “Recent Developments in the Design of Photoreactors for Solar Energy Conversion from Water Splitting and CO 2 Reduction.” Applied Catalysis A: General 550(August 2017):122–41.