Analisa Perbandingan Kontroler PID Terhadap Motor BLDC Menggunakan Penalaran Cohen-Coon dan Trial & Error

##plugins.themes.academic_pro.article.main##

Rendi Fajar Gumilang
Sitti Amalia
Anggun Anugrah
Sepanur Bandri

Abstract

The purpose of this research is to design PID control on BLDC motors using 2 tuning methods, namely Cohen-Coon and Trial & Error. PID control of formula calculations with calculations in Simulink Matlab. From the simulation results shown in graphical form, the use of the PID control gives a better effect than the use of the P and PI controls. This can be seen in the comparison curve which shows the speed of the initial start process when using the PID control. In the Trial & Error method, the response value of the system to controller P is obtained, namely, rise time = 0.0151 s, settling time = 0.6 s, overshoot = 75.9%, peak time = 1.74 s, and time delay = 0.424 s. on the PI controller namely, rise time = 0.0148 s, settling time = 0.591 s, overshoot = 76.3%, peak time = 1.74 s, and time delay = 0.0416 s. on the PID controller namely, rise time = 0.0496 s, settling time = 0.55 s, overshoot = 44 %, peak time = 1.31 s, and time delay = 0.128 s. In the Cohen-Coon method, the response value of the system to controller P is obtained, namely, rise time = 0.0168 s, settling time = 0.575 s, overshoot = 73.3%, peak time = 1.71 s, and time delay = 0.0469 s. on the PI controller namely, rise time = 0.0573 s, settling time = 0.603 s, overshoot = 39.3%, peak time = 1.23 s, and time delay = 0.142 s. on the PID controller namely, rise time = 0.276 s, settling time = 0.658 s, overshoot = 2.42 %, peak time = 0.159 s, and time delay = 0.576 s. From the simulation results it is shown that the value for the Cohen-Coon tuning method is better than the Trial & Error method, perhaps because the input value for the Trial & Error method is larger.

##plugins.themes.academic_pro.article.details##

How to Cite
Fajar Gumilang, R., Amalia, S., Anugrah, A. and Bandri, S. (2023) “Analisa Perbandingan Kontroler PID Terhadap Motor BLDC Menggunakan Penalaran Cohen-Coon dan Trial & Error”, Ranah Research : Journal of Multidisciplinary Research and Development, 5(3), pp. 219-228. doi: 10.38035/rrj.v5i3.759.

References

Akbar, D. & Riyadi, S., 2018. Pengaturan Kecepatan Pada Motor Brushless DC (BLDC) Menggunakan PWM (Pulse Width Modulation). SNIKO, I(1), p. 1.
Alsayid, B., Salah, W. & Alawneh, Y., 2019. Modelling of sensored speed control of BLDC motor using MATLAB/SIMULINK. IJECE, IX(5), pp. 3333-3334.
Amalia, S., 2019. Implementasi 2 lilitan phasa terhubung terhadap tegangan pada motor brushless direct current (BLDC) rotor luar dengan analisis anova. JURNAL TEKNIK ELEKTRO, VIII(2), p. 99.
Ardiansyah, M. D. & Rohman, F., 2019. Implementasi dan Analisis Kendali Kecepatan Motor BLDC 1 kW menggunakan Algoritma PID. Jurnal ELTEK, XVII(02), pp. 81-93.
Astuti, p. & Masdi, H., 2022. Sistem Kendali Kecepatan Motor BLDC Menggunakan PWM Berbasis Mikrokontroler Arduino Uno. JTEIN, III(1), pp. 120-121.
Dhanda, A. & niwas, D., 2015. Comparison of Ziegler-Nichols, Cohen-Coon and Fuzzy Logic Controllers for Heat Exchanger Model. IJEMHS, XV(01), pp. 1-7.
Irsyadi, F., Arrofiq, M., Sumanto, B. & Sebastian, M., 2021. Perancangan dan Implementasi Sistem Monitoring Kecepatan Motor BLDC Hub Bergir Pada Sepeda Listrik. Sains Terapan, VII(1), p. 9.
Kurniawan, F. A., 2020. DESAIN SISTEM PENGATURAN POSISI SUDUT AERO PENDULUM BERBASIS FUZZY LOGIC. Teknik Elektro, IX(03), pp. 625-632.
Oguntoyinbo, O. J., 2009. PID CONTROL OF BRUSHLESS DC MOTOR AND ROBOT TRAJECTORY PLANNING AND SIMULATION WITH MATLAB/SIMULINK. Finland: s.n.
putra, R. A. B. S., Tahtawi, A. R. A. & Wijayanto, K., 2021. Pengendalian Kecepatan Motor DC Menggunakan Metode Fuzzy Integral Controller. IRWNS, III(12), p. 52.
Sartika, E. M., Muliady, Sarjono, R. & Yuvens, V., 2021. Pengontrolan Kecepatan Rotor BLDC UAV Berdasarkan Hasil Identifikasi menggunakan Metode Regresi. Jurnal ELEKOMIKA, IX(1), pp. 114-124.
Siong, T. C., Ismail, B., Siraj, S. F. & Mohammed, M. F., 2011. Fuzzy Logic Controller for BLDC Permanent Magnet Motor Drives. Internasional Journal of Electrical & Computer Sciences, XI(02), pp. 12-17.
Siregar, G. A. & Amalia, S., 2022. ANALISIS PERFORMANSI PENGENDALI PID PADA MOTOR DC DENGAN MENGGUNAKAN METODE TUNING COHEN-COON. SEMINAR NASIONAL DAN TEKNOLOGI, XII(01), pp. 633-638.
Suryatini, F. & Firasanti, A., 2018. Kendali P, PI, dan PID analog pada pengaturan Kecepatan Motor DC dengan Penelaan Ziegler-Nichols. Journal of Electrical and Electronics, VI(1), pp. 65-67.
Suryatini, F. & Firasanti, A., 2020. KENDALI P, PI DAN PID ANALOG PADA PENGATURAN KECEPATAN MOTOR DC DENGAN PENALAAN ZIEGLER-NICHOLS. ELECTRICAL AND ELECTRINICS, VI(01), pp. 65-80.
Triwijaya, S., Prasetyo, Y. & Wati, T., 2021. Kontrol Keceptan Motor BLDC dengan PID-Firefly. JURNAL IPTEK, XXV(01), pp. 51-58.
Wahono , T. & Sutikno, T., 2016. Skema Pengendali Motor BLDC Tanpa Sensor Posisi Rotor dengan metode Deteksi Kembali EMF berbasis Mikrokontroler Arduino. JITEKI, II(2), pp. 69-70.
Wibowo, Y. C. & Riyadi, S., 2018. Analisa Pembebanan pada Motor Brushless DC (BLDC). SNIKO, III(10), p. 1.
Xia, C. L., 2012. PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVES AND CONTROLS. 1st ed. Tianjin University: WILEY.
Yulianta, A. D. & Hadi, S. p., 2015. PENGENDALIAN KECEPATAN MOTOR BRUSHLESS DC (BLDC) MENGGUNAKAN METODE LOGIKA FUZZY. JURNAL TEKNOLOGI TECHNOSCIENTIA, VIII(1), pp. 1-4.
Zuhrie, M. S., Rusimamto, P. W. & Kholis, N., 2021. RANCANG BANGUN PID CONTROLLER DENGAN TUNING ZIEGLER NICHLOLS UNTUK PENGENDALIAN POSISI SUDUT MOTOR DC. Teknik Elektro, X(02), pp. 537-545.