Support Vector Regression untuk Prediksi Beban Listrik Jangka Pendek Menggunakan Metode Fraktal

##plugins.themes.academic_pro.article.main##

Khalisa Sasikirana Athaya
Jangkung Raharjo
Syamsul Rizal

Abstract

In this era of globalization, electricity is one of the essential needs in human life. Electricity load prediction plays a crucial role in designing supply-demand operations to avoid losses from various aspects. In this study, short-term electricity load prediction is conducted per 30 minutes, aiming to achieve minimum prediction errors. Support Vector Regression (SVR) is used as the machine learning method for data classification, and fractal method is employed for dimension calculation and feature extraction from historical data. The results of this research are as follows: In the first experiment, short-term prediction was conducted without using the fractal method, resulting in a Mean Absolute Percentage Error (MAPE) of 2.85%. In the second experiment, short-term prediction was performed using the dataset that had undergone fractal calculation and feature extraction, leading to a lower MAPE of 2.32%. The prediction results using the fractal method obtained a lower MAPE compared to the non-fractal approach. Fractal significantly influences the calculation of short-term electricity load prediction using Support Vector Regression (SVR).

##plugins.themes.academic_pro.article.details##

How to Cite
Sasikirana Athaya, K., Raharjo, J. and Rizal, S. (2023) “Support Vector Regression untuk Prediksi Beban Listrik Jangka Pendek Menggunakan Metode Fraktal”, Ranah Research : Journal of Multidisciplinary Research and Development, 5(4), pp. 247-252. doi: 10.38035/rrj.v5i4.772.

References

Amanda, R., Yasin, H., & Prahutama, A. (2014). Analisis Support Vector Regression (SVR) Dalam Memprediksi Kurs Rupiah Terhadap Dollar Amerika Serikat. Jurnal Gaussian, 3(4), 849–858. https://doi.org/10.14710/j.gauss.3.4.849-858
Cahyono, R. E., Sugiono, J. P., & Tjandra, S. (2019). Analisis Kinerja Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Harga Konsumen. JTIM : Jurnal Teknologi Informasi dan Multimedia, 1(2), 106–116. https://doi.org/10.35746/jtim.v1i2.22
Cai, J., & You, Q. (2010). Fractal Theory and Its Application in Studying the Feature of Landforms. 2010 International Workshop on Chaos-Fractal Theories and Applications, 440–444. Kunming, China: IEEE. https://doi.org/10.1109/IWCFTA.2010.81
Gupta, G., & Rathee, N. (2015). Performance Comparison of Support Vector Regression and Relevance Vector Regression for Facial Expression Recognition. 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), 1–6. Faridabad, India: IEEE. https://doi.org/10.1109/ICSCTI.2015.7489548
Hasang, S., & Supardjo, S. (2012). Geometri Fraktal Dalam Rancangan Arsitektur. MEDIA MATRASAIN: Jurnal Aritektur, Sains, Kota Pemukiman dan Lingkungan, 9(1). https://doi.org/10.35792/matrasain.v9i2.665
Lopez-Martin, C., Banitaan, S., Garcia-Floriano, A., & Yanez-Marquez, C. (2017). Support Vector Regression for Predicting the Enhancement Duration of Software Projects. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 562–567. Cancun, Mexico: IEEE. https://doi.org/10.1109/ICMLA.2017.0-101
Maulana, N. D., Setiawan, B. D., & Dewi, C. (2019). Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus: Harum Bakery). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(9). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4850
Syafruddin, M., Hakim, L., & Despa, D. (2014). Metode Regresi Linier untuk Prediksi Kebutuhan Energi Listrik Jangka Panjang (Studi Kasus Provinsi Lampung). Jurnal Informatika dan Teknik Elektro Terapan, 2(2). https://doi.org/10.23960/jitet.v2i2.237
Vivas, E., Allende-Cid, H., & Salas, R. (2020). A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy, 22(12), 1412. https://doi.org/10.3390/e22121412