Metode Geographically Weighted Panel Regression (GWPR) Untuk Menganalisis Faktor Yang Mempengaruhi Kemiskinan Di Provinsi Sumatera Utara

##plugins.themes.academic_pro.article.main##

Andrew Lupe Tiopan Sitorus
Elmanani Simamora

Abstract

This study aims to analyze the factors of population density, life expectancy, years of schooling, open unemployment rate, per capita monthly food expenditure, population with health complaints, economic growth, human development index, households with access to proper drinking water and households with access to proper sanitation on the percentage of poverty in North Sumatra province. This research is based on secondary data available at the North Sumatra Central Bureau of Statistics in 2017-2021. The factor analysis used in this study is Geographically Weighted Panel Regression (GWPR) which is a combination of the Geographically Weighted Regression (GWR) method with the panel data regression method. The results of the research analysis show that simultaneously the factors of population density, life expectancy, open unemployment rate, monthly per capita food expenditure, population with health complaints, households with access to proper drinking water have no significant effect. If tested simultaneously, only the factor of households having access to proper sanitation has a significant effect on the percentage of poverty. However, partially, these factors have a significant effect on the percentage of poverty.

##plugins.themes.academic_pro.article.details##

How to Cite
Tiopan Sitorus, A. L. and Simamora, E. (2024) “Metode Geographically Weighted Panel Regression (GWPR) Untuk Menganalisis Faktor Yang Mempengaruhi Kemiskinan Di Provinsi Sumatera Utara”, Ranah Research : Journal of Multidisciplinary Research and Development, 6(1), pp. 155-167. doi: 10.38035/rrj.v6i1.808.

References

Aprilianti, R., Messakh, G. C., Asiah, S. N., & Nohe, D. A. (2022). Analisis Regresi Data Panel Pada Kasus Persentase Kemiskinan di Kalimantan Timur. Prosiding Seminar Nasional Matematika, Statistika, Dan Aplikasinya, 211–223.
Arum, P. R., & Alfian, S. (2022). Pemodelan Pertumbuhan Ekonomi di Jawa Barat Menggunakan Metode Geographically Weighted Panel Regression. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(2), 219–227. https://doi.org/10.36456/jstat.vol15.no2.a5506
BPS_Sumut. (2020). Sumatera Utara Dalam Angka. Badan Pusat Statistik Sumatera Utara.
Henninger, N., & Snel, M. (2002). Where are the poor? Experiences with the development and use of poverty maps. World Resources Institute and UNEP/GRID.
Hida, I. M., Sukmono, A., & Firdaus, H. S. (2020). Analisis Kerentanan Sosial Dan Pengaruhnya Terhadap Masalah Sosial Dengan Geographically Weighted Regression (Gwr) (Studi Kasus:Kota Semarang). Jurnal Geodesi Undip Januari, 9, 237–246.
Khomsan, A., Dharmawan, A. H., Saharuddin, Alfiasari, Syarief, H., & Sukandar, D. (2015). Indikator Kemiskinan dan Misklasifikasi Orang Miskin. Yayasan Pustaka Obor Indonesia.
Marsono, A., Silitonga, P., & Widodo, D. S. (2018). Effect of Current Ratio, Leverage Ratio, Inflation and Currency Share Closing Price of Consumer Goods Industry in Indonesia Stock Exchange. International Journal of Business and Applied Social Science (IJBASS), 4(8).
Nafi, B. (2021). Analisis Faktor-Faktor yang Dapat Mempengaruhi Pengentasan Kemiskinan di Indonesia ( 2016-2019 ). Jurnal Ilmiah Ekonomi Islam, 7(02), 953–960.
Nasikun. (2001). Isu dan Kebijakan Penanggulangan Kemiskinan. Yogyakarta: Universitas Gajah Mada.
Nawari. (2010). Analisis Regresi dengan MS Excel 2007 dan SPSS 17. Jakarta: Alex Media Komputindo.
Nyompa, S., Maru, R., & Amal. (2019). Analisis Kepadatan Penduduk dengan Tingkat Kemiskinan di Kota Makasar. Jurnal Prosiding Seminar Nasional LP2M UNM, 902-906.
Park, H. M. (2005). Linear Regression Models for Panel Data Using SAS, STATA, LIMDEP, and SPSS. Bloomington: The Trustees of Indiana University.
Pratama, Y. C. (2014). Analisis Faktor-Faktor yang Mempengaruhi Kemiskinan di Indonesia. Jurnal Bisnis dan Manajemen, 210-223.
Rachbini, W. (2021). Statistika Terapan Pengolahan Data Time Series Menggunakan Eviews. Banten: CV. AA. Rizky.
Rencher, A. C., & Schaalje, G. B. (2008). Linear Models in Statistics. New Jersey: A John Wiley and Sons.
Riyanto, S., & Putera, A. R. (2022). Metode Riset Penelitian Kesehatan & Sains. Yogyakarta: Deepublish.
Roflin, E., Pariyana, & Liberty, I. A. (2022). Kupas Tuntas Analisis Regresi Tunggal dan Ganda. Pekalongan: Penerbit NEM.
Rohma, I. S., & Prakoso, J. A. (2022). Pengaruh IPM, RLS, TPT, dan Pengeluaran Perkapita Terhadap Kemiskinan di Provinsi Jawa Barat. Jurnal Transekonomia : Akuntansi, Bisnis, dan Keuangan, 255-266.
Sembiring, D., Widodo, D. S., Adjiantoro, B., Saman, A. B., & Kader, B. A. (2019). Failure Analysis of the Furnace Scotch Boiler. International Journal of Engineering and Advanced Technology (IJEAT), 9(1), 3704–3798.
Sihombing, S. O. (2022). Metode Analisis Multivariat. Pekalongan: PT Nasya Expanding Management.
Silitonga, P. E. S., & Widodo, D. S. (2019). The effect of supply chain planning and operations on employee performance through employee job satisfaction. International Journal of Supply Chain Management, 8(6), 655–663.
Silitonga, P. E. S., Widodo, D. S., & Ali, H. (2017). Analysis of the effect of organizational commitment on organizational performance in mediation of job satisfaction (Study on Bekasi City Government). International Journal of Economic Research.
Simamora, B. (2005). Analisis Multivariat Pemasaran. Jakarta: PT Gramedia Pustaka Utama.
Solimun, A. A. (2017). Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. Malang: UB Press.
Suhaimi, A. (2019). Pangan, Gizi, dan Kesehatan. Yogyakarta: Deepublish.
Suwandi. (2015). Desentralisasi Fiskal dan Dampaknya terhadap Pertumbuhan Ekonomi, Penyerapan Tenaga Kerja, Kemiskinan, dan Kesejahteraan di Kabupaten/Kota Induk Provinsi Papua. Yogyakarta: Deepublish.
Widodo, D. S. (2017). The influence of organizational culture, leadership, and compensation through work motivation on employee performance. Jurnal Manajemen Motivasi, 13(2), 896–908.
Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. London: MIT Press.
Yu, D. (2010). Exploring Spatiotemporally Varying Regressed Relationships: The Geographically Weighted Panel Regression Analysis. The International Archives of The Photogrammety, Remote Sensing and Spatial Information Sciences, 134-139.
Zebua, L. M., Zega, Y., & Harefa, A. O. (2022). Peramalan Tingkat Kemiskinan Di Pulau Nias Dengan Metode Kuadrat Terkecil. Jurnal Ilmiah Pendidikan Matematika, 1(1), 23–29.