Transfer Function and Transient Response Analysis of Active Inrush Current Limiting Circuit on P-MOSFET with Equivalent RLC Series Circuit Load of Inverter

##plugins.themes.academic_pro.article.main##

Munnik Haryanti
Adi Nugroho
Bekti Yulianti
Yohannes Dewanto

Abstract

Inrush current is a transient current surge when a piece of electrical equipment is turned on. One of the solutions is a P-MOSFET-based active inrush current limiter, which will be analyzed with KiCad software to analyze the transient response graph and a Python program to analyze the transfer function graph. From the observation, the circuit could reduce the inrush current amount which was initially ranging from 12mA – 12A to below 500nA, with a very low amount of ripple (under 100nA peak-to-peak). The transfer function graph from the RLC load represents its transient response graph, and the transfer function graph of the inrush current limiter with load creates a logarithm function.


Keywords: inrush current, P-MOSFET, transient response, transfer function, ripple


 

##plugins.themes.academic_pro.article.details##

How to Cite
Haryanti, M., Nugroho, A., Yulianti, B. and Dewanto, Y. (2024) “Transfer Function and Transient Response Analysis of Active Inrush Current Limiting Circuit on P-MOSFET with Equivalent RLC Series Circuit Load of Inverter”, Ranah Research : Journal of Multidisciplinary Research and Development, 6(3), pp. 299-306. doi: 10.38035/rrj.v6i3.818.

References

Alexander, C. K. (2013). Fundamentals of Electric Circuits. New York: McGraw-Hill.
Doetsch, G. (2012). Introduction to the Theory and Application of the Laplace Transformation. Springer Science & Business Media.
Kusko, A., & Thompson, M. T. (2007). Power Quality in Electrical Systems. New York: McGraw Hill Professional.
Larasatty, A. A., Bandoro, A., & Fatimah, I. (t.thn.). Hukum Ohm dan Hukum Kirchoff.
Purcell, E. M., & Morin, D. J. (2013). Electricity and Magnetism. Cambridge: Cambridge University Press.
Arief, M. (2018). Perhitungan Dan Analisis Inrush Current Pada Transformator Berbasis Parameter Transformator. Jurnal STT Yuppentek 9(1), 67-74.
de Györgyfalva, G. C., & Reaney, I. (2001). Decomposition of NiMn2O4 Spinel: An NTC Thermistor Material. Journal of the European Ceramic Society 21(10–11), 2145-48.
Jamali, M., Mirzaie, M., & Gholamian, A. (2011). Calculation and Analysis of Transformer Inrush Current Based on Parameters of Transformer and Operating Conditions. Elektronika ir Elektrotechnika 109(3), 1392-1215.
Mitra, J., Xufeng, X., & Benidris, M. (2020). Reduction of Three-Phase Transformer Inrush Currents Using Controlled Switching. IEEE Transactions on Industry Applications, 890-97.
Moradi, A., & Madani, S. M. (2018). New Technique for Inrush Current Modelling of Power Transformers Based on Core Saturation Analysis. IET Generation, Transmission & Distribution 12(10).
Okilly, A. H., Namhun, K., & Jeihoon, B. (2020). Inrush Current Control of High Power Density DC–DC Converter. Energies 13(17), 4301.
Siagian, S. M., Jaya, G. W., & Nurhidayati, I. (2021). Analisis Jumlah Muatan Listrik Serta Energi Pada Kapasitor Berdasarkan Konstanta Dielektrik Suatu Material. ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 7(1), 176-80.
Virtanen et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods 17(3), 261-72.
Westerlund, S., & Ekstam, L. (1994). Capacitor Theory. IEEE Transactions on Dielectrics and Electrical Insulation 1(5), 826-39.
Ong, T.-C., Seki, K., Ko, P., & Hu, C. (1989). P-MOSFET Gate Current and Device Degradation. International Symposium on VLSI Technology, Systems and Applications (hal. 178-82). Taipei: IEEE.
Eggleston, D., Doucet, J., & Shaw, J. S. (2007, April). PWM Pure Sine Wave Power Inverter. Diambil kembali dari Digital WPI: https://digitalcommons.wpi.edu/mqp-all/185
ON Semiconductor. (2014, February). AND9093/D: Using MOSFETs in Load Switch Applications. Diambil kembali dari Is Now - ON Semiconductor: https://www.onsemi.com/pub/Collateral/AND9093-D.PDF