Prediksi Keindahan Wajah dengan Menggunakan Attribute Aware Convolutional Neural Network (AACNN)
##plugins.themes.academic_pro.article.main##
Published
Jul 28, 2024
Abstract
The perception of beauty whether applied to a face or any similar subject, differs among people, with assorted values doled out to magnificence levels or positions. Facial beauty assessment has gained significant interest in various domains, including cosmetics, image processing, and artificial intelligence. This review digs into facial beauty prediction utilizing the Attribute Aware Convolutional Neural Network (AACNN) according to the SCUT-FBP5500 benchmark dataset. The study in this paper closes by accentuating the requirement for more comprehensive and adjusted datasets and proposes future exploration bearings to improve model decency and address moral ramifications.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Boukhari, D. E., Chemsa, A. dan Ajgou, R. (2023). Facial Beauty Prediction Based on Vision Transformer. International Journal of Electrical and Electronic Engineering & Telecommunications, ISSN: 2319-2518 (Online), DOI: 10.18178/ijeetc
Lin L, Liang L, Jin L, dkk. (2019). Attribute-Aware Convolutional Neural Networks for Facial Beauty Prediction. Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press, 2019: 847-853.
Saeed, J. N, Abdulazeez, A. M. dan Ibrahim, D. A. (2022). FIAC-Net: Facial Image Attractiveness Classification Based on Light Deep Convolutional Neural Network. 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), IEEE, Sep. 2022, pp. 1–6. doi:10.1109/ICCSEA54677.2022.9936582.
Vahdati, E. dan Suen, C. Y. (2019). Female Facial Beauty Analysis Using Transfer Learning and Stacking Ensemble Model. pp. 255–268. doi: 10.1007/978-3-030-27272-2_22.
Xu, L. dan Xiang, J. (2020). ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks. Oct. 2020.
Żejmo, A., Gielert, M., Grabski, M. dan Kostek, B. (2023). Assessing the Attractiveness of Human Face Based on Machine Learning. Procedia Comput Sci, vol. 225, pp. 1019–1027, 2023, doi: 10.1016/j.procs.2023.10.089.