Inovasi K3: Integrasi AI dan IoT untuk Meningkatkan Keselamatan Kerja
##plugins.themes.academic_pro.article.main##
Published
Aug 23, 2024
Abstract
This research explores innovations in occupational safety and health (OSH) through AI and IoT integration. The study aims to examine how combining AI and IoT can enhance safety across industries. Using a qualitative analytical descriptive method with an empirical normative approach, data were gathered from journals, documentation, and literature reviews. Results indicate that AI and IoT can identify hazards early, monitor real-time conditions, and provide early warnings. Applications include IoT sensors for detecting hazardous gases and AI for predicting accidents based on historical data. These systems improve incident response and reduce corrective action time, boosting productivity and efficiency. The study recommends broader adoption of AI and IoT in OSH strategies to enhance safety and health in various sectors
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Brown, T., Williams, K., & Garcia, L. (2021). Reducing Operational Costs through AI and IoT in Workplace Safety Systems. Journal of Business Efficiency, 33(2), 98–112.
Carbonero, F., Davies, J., Ernst, E., Fossen, F. M., Samaan, D., & Sorgner, A. (2023). The impact of artificial intelligence on labor markets in developing countries: a new method with an illustration for Lao PDR and urban Viet Nam. Journal of Evolutionary Economics, 33(3), 707–736. https://doi.org/10.1007/s00191-023-00809-7
Chen, J. (2019). The role of IoT in occupational safety and health. Journal of Safety Research, 70, 256–266.
Djebrouni, M., & Wolbring, G. (2020). Impact of robotics and human enhancement on occupation: what does it mean for rehabilitation? In Disability and Rehabilitation (Vol. 42, Issue 11, pp. 1518–1528). Taylor and Francis Ltd. https://doi.org/10.1080/09638288.2018.1527401
Fadilah, F., . S., & Fathimah, A. (2019). Kajian Sistem Proteksi Kebakaran Gedung Instalasi Gawat Darurat (IGD) Rumah Sakit Umum Daerah Leuwiliang Kabupaten Bogor Tahun 2018. PROMOTOR, 2(2), 112–120. https://doi.org/10.32832/pro.v2i2.1796
Febriyanti, N. T. (2023). Perancangan Sistem Monitoring Kebisingan Secara Realtime Berbasis Website Dalam Lingkungan Kerja Sebagai Pendukung Data Kesehatan dan Keselamatan Kerja (K3) . Bandar Lampung: Universitas Lampung. Universitas Lampung.
Georgieff, A., & Hyee, R. (2022). Artificial Intelligence and Employment: New Cross-Country Evidence. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.832736
Hazarika, I. (2020). Artificial intelligence: Opportunities and implications for the health workforce. International Health, 12(4), 241–245. https://doi.org/10.1093/INTHEALTH/IHAA007
Howard, J. (2019). Artificial intelligence: Implications for the future of work. In American Journal of Industrial Medicine (Vol. 62, Issue 11, pp. 917–926). Wiley-Liss Inc. https://doi.org/10.1002/ajim.23037
ILO. (2023). World Employment and Social Outlook Trends 2023.
Johnson, L. (2022). Economic impacts of workplace injuries. Occupational Health and Safety, , 91(4), 34–41.
Khairuddin, M. Z. F., Lu Hui, P., Hasikin, K., Abd Razak, N. A., Lai, K. W., Mohd Saudi, A. S., & Ibrahim, S. S. (2022). Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance. International Journal of Environmental Research and Public Health, 19(21). https://doi.org/10.3390/ijerph192113962
Khashaba, E., El-Helaly, M., El-Gilany, A. H., Motawei, S. M., & Foda, S. (2018). Risk factors for non-fatal occupational injuries among construction workers: A case–control study. Toxicology and Industrial Health, 34(2), 83–90. https://doi.org/10.1177/0748233717733853
Kim, Y., & Choi, Y. (2022). Smart Helmet-Based Proximity Warning System to Improve Occupational Safety on the Road Using Image Sensor and Artificial Intelligence. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192316312
Lee, J. , P. S. , & Kim, H. (2019). Enhancing Worker Well-being and Productivity through Safe and Healthy Work Environments. Industrial Health Journal, 24(2), 101–115.
Miller, T. (2020). Predictive analytics in occupational safety:AI and IoT applications. Safety Science, 124(104562.).
Najih, M. A. (2021). Rancang BAngun Alat Deteksi Asap Rokok dan Nyala Api Dengan Interface Aplikasi Telegram Berbasis Arduino. [Thesis]. Universitas Mercu Buana. .
Niehaus, S., Hartwig, M., Rosen, P. H., & Wischniewski, S. (2022). An Occupational Safety and Health Perspective on Human in Control and AI. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.868382
Nurzakiah, N. R., Khairunnisa, N. A., Ulhaq, H. D., Nurhikmah, W., Faridah, Y. H., & Moch. Yusup. (2022). Alat Multisensor Pendeteksi Kesehatan Dan Kenyamanan Bangunan Dalam Mempersiapkan Bangunan Sekolah Untuk Pembelajaran Tatap Muka. Jurnal Difusi, 5(1), 50–58. https://doi.org/10.35313/difusi.v5i1.3477
Pishgar, M., Issa, S. F., Sietsema, M., Pratap, P., & Darabi, H. (2021). Redeca: A novel framework to review artificial intelligence and its applications in occupational safety and health. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 13). MDPI. https://doi.org/10.3390/ijerph18136705
Podgórski, D., Majchrzycka, K., Dąbrowska, A., Gralewicz, G., & Okrasa, M. (2017). Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies. International Journal of Occupational Safety and Ergonomics, 23(1), 1–20. https://doi.org/10.1080/10803548.2016.1214431
Rieth LK. (2000). The occupational health service. Staffing, facilities, and equipment. AAOHN J, 84(8), 395–403.
Sharma, R. , & Gupta, A. (2021). Effectiveness of AI and IoT in Reducing Workplace Accidents in High-Risk Industries. Ournal of Safety Research, 42(5), 321–335.
Smith, R. (2021). Real-time monitoring and AI in safety management. Industrial Safety and Hygiene News, 55(8), 16–20.
Steimers, A., & Schneider, M. (2022). Sources of Risk of AI Systems. International Journal of Environmental Research and Public Health, 19(6). https://doi.org/10.3390/ijerph19063641
Warning, A., Weber, E., & Püffel, A. (2022). On the Impact of Digitalization and Artificial Intelligence on Employers’ Flexibility Requirements in Occupations—Empirical Evidence for Germany. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.868789
Waworundeng, J. M. S., & Lengkong, O. (2018). Sistem Monitoring dan Notifikasi Kualitas Udara dalam Ruangan dengan Platform IoT. CogITo Smart Journal, 4(1), 94–103. https://doi.org/10.31154/cogito.v4i1.105.94-103