Optimalisasi Kebijakan Pangan Berbasis Big Data: Model Manajemen Produksi dan Distribusi Beras di Indonesia
##plugins.themes.academic_pro.article.main##
Published
Aug 10, 2023
Abstract
Rice is an important commodity in Indonesia and the main source of food for most of the population. However, various challenges such as production distribution inequality, supply chain inefficiency, and price fluctuations still pose a threat to national food security. This research aims to develop a Big Data Management Model for rice commodity, which integrates descriptive, diagnostic, predictive and prescriptive analysis to improve the effectiveness of national food policy. This research uses data from the Central Bureau of Statistics (BPS) and the Ministry of Agriculture, covering rice production from 1993 to 2018. Analysis was conducted with K-Means clustering for descriptive analysis, Decision Tree and Random Forest for diagnostic analysis, Linear Regression and Recurrent Neural Network (RNN) for predictive analysis, and the application of Blockchain Logistics 4.0 for prescriptive recommendations. This approach enables a comprehensive assessment of production trends, factors affecting yields, and data-driven policy strategies. The results show that rice production is highly concentrated in Java, which accounts for 44.47% of total national production, while eastern regions such as Papua and Maluku have low production levels due to limited land and agricultural infrastructure. The main factors affecting rice productivity are land availability, irrigation systems, and labor access. The prediction model shows that several provinces, including DKI Jakarta, Kalimantan, and Riau, are expected to experience a decline in production in the next five years if there is no appropriate policy intervention. In addition, artificial intelligence-based decision support systems and the application of blockchain in the rice supply chain can be a solution to improve logistics efficiency, stabilize prices, and reduce distribution bottlenecks. These findings confirm that Big Data and AI technologies have the potential to improve national food security through improved prediction accuracy and optimization of supply chain networks. However, successful implementation is highly dependent on strengthening digital infrastructure, standardizing agricultural data, and increasing technology adoption among farmers and policy makers. This research contributes to the development of data-driven food policy, by providing a framework that can be adapted for long-term food security planning in developing countries. Future studies are recommended to explore models that are more adaptive to environmental changes, climate variability, and global market dynamics that affect rice production and distribution.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Bekker, A. (2018). 4 Types of Data Analytics to Improve Decision-Making. ScienceSoft Blog. Retrieved from https://www.scnsoft.com/blog/4-types-of-data-analytics
Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0
Chung, C. L., Huang, K. J., Chen, S. Y., Lai, M. H., Chen, Y. C., & Kuo, Y. F. (2016). Detecting Bakanae disease in rice seedlings by machine vision. Computers and Electronics in Agriculture, 121, 404–411. https://doi.org/10.1016/j.compag.2016.02.001
Deka, G. C. (2016). Big Data Predictive and Prescriptive Analytics. IGI Global. https://doi.org/10.4018/978-1-4666-9840-6
Drake University. (2011). What is a food policy? State and Local Food Policy Councils. Iowa Food Policy Councils. Retrieved from https://www.drake.edu/foodpolicy
Fang, H., Zhang, Z., Wang, C. J., Daneshmand, M., Wang, C., & Wang, H. (2015). A survey of big data research. IEEE Network, 29(5), 6–9. https://doi.org/10.1109/MNET.2015.7293298
Hakim, D. B., Harianto, H., & Nurmalina, R. (2019). Analisis Dampak Kebijakan Beras Sejahtera dan Kebijakan Program Bantuan Non Tunai terhadap Titik Ekuilibrium Rumah Tangga Miskin di Indonesia. Jurnal Ekonomi Pertanian dan Agribisnis, 3(4), 799-808. https://doi.org/10.21776/ub.jepa.2019.003.04.10
Handayani, S. W., & Kunarti, S. (2018). The Dynamics of Paddy Land Legal Policy in Ramlan Indonesia. SHS Web of Conferences, 54, 03009. https://doi.org/10.1051/shsconf/20185403009
Lopulilsa, C. A., & Suryani, I. (2018). The Emerging Roles of Agricultural Insurance and Farmers Cooperatives on Sustainable Rice Productions in Indonesia. IOP Conference Series: Earth and Environmental Science, 157(1), 012070. https://doi.org/10.1088/1755-1315/157/1/012070
Makbul, Y., Ratnaningtyas, S., & Pradono. (2019). Integrating of Rice Prices at Producer, Wholesaler, and Urban-Rural Customer Markets with Paddy Prices at The Farm Gate. Archives of Business Research, 7(3). https://doi.org/10.14738/abr.73.6603
McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68. Retrieved from https://hbr.org/2012/10/big-data-the-management-revolution
Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44, 173–188. https://doi.org/10.1016/j.compag.2004.04.003
Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., & Ramon, H. (2005). Plant disease detection based on data fusion of hyperspectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11(2), 75–83. https://doi.org/10.1016/j.rti.2004.12.002
Perdinan, P., Dewi, N. W. S. P., & Dharma, A. W. (2018). Lesson Learnt from Smart Rice Actions in Indonesia. Future of Food: Journal on Food, Agriculture and Society, 6(2), 9-20. Retrieved from https://fofj.org/index.php/fofj/article/view/49
Putri, D. R., Hayatudin, A., & Ibrahim, M. A. (2019). Tinjauan Penerapan Konsep Maslahah Mursalah terhadap Kebijakan Impor Beras di Indonesia. Prosiding Hukum Ekonomi Syariah, 32-39. Retrieved from http://repository.uinjkt.ac.id/dspace/handle/123456789/52249
Su, Y., Xu, H., & Yan, L. (2017). Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi Journal of Biological Sciences, 24(3), 537–547. https://doi.org/10.1016/j.sjbs.2017.01.023
Wardani, C., Jamhari, Hardyastuti, S., & Suryantini, A. (2019). Kinerja Ketahanan Beras di Indonesia: Komparasi Jawa dan Luar Jawa Periode 2005-2017. Jurnal Ketahanan Nasional, 25(1), 107-131. https://doi.org/10.22146/jkn.45765
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023