How AI is Changing Healthcare: A Review of Innovations and Challenges in Health Informatics
##plugins.themes.academic_pro.article.main##
Published
Oct 31, 2024
Abstract
Revolutionizing healthcare with better, quicker diagnoses, more refined treatment plans, enhanced patient monitoring, and still faster administrative process. This transformation is exemplified in the AI technology of health informatics, with tools helping analyze huge datasets, extract patterns, and improve clinical decisions. This article contemplates the multifarious ways AI has revolutionized healthcare, the innovations falling in the area of diagnostics, treatment personalization, remote care, and operational effectiveness. Nonetheless challenges becoming evident consist of ethical concerns with data privacy issues and limiting the actual application of these models. A mixed-method approach was utilized to evaluate some examples of evolving inventions. From the available evidence presented in articles of this nature, compiled from the various other clinical trials undertaken on AI-based health information systems and AI-driven research projects, concrete examples of AI solutions that work in real-time in radiology, pathology, virtual health assistants and predictive analytics have been proven to be effective. The review, however, discusses struggles regarding regulatory compliance, algorithmic bias, and clinician adoption. The review calls for stronger policy frameworks, more interdisciplinary collaboration, and continuous research to bolster the uptake of AI in clinical workflows by overcoming these challenges. The future of AI's transformational climax in the healthcare sector depends upon the responsible and equitable use of these powerful technologies.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Ranah Research : Journal of Multidisciplinary Research and Development berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Ranah Research.
References
Brinker TJ, Hekler A, Enk AH, et al (2019) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer 113:47–54
Buch VH, Ahmed I, Maruthappu M (2018) Artificial intelligence in medicine: current trends and future possibilities. The British Journal of General Practice 68:143
Char DS, Abràmoff MD, Feudtner C (2020) Identifying Ethical Considerations for Machine Learning Healthcare Applications. Am J Bioeth 20:7–17
Chaudhuri A, Pash G, Hormuth DA, Lorenzo G, Kapteyn M, Wu C, Lima EABF, Yankeelov TE, Willcox K (2023) Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Front Artif Intell 6:1222612
Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthc J 6:94
Duggal B, Pandya S, Yogesh MJ, Karthikeyan J (2022) Health Informatics: Engaging Modern Healthcare Units: A Brief Overview. Front Public Health 10:854688
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542:7639 542:115–118
Ftouni R, AlJardali B, Hamdanieh M, Ftouni L, Salem N (2022) Challenges of Telemedicine during the COVID-19 pandemic: a systematic review. BMC Med Inform Decis Mak 22:1–21
Ghozali MT (2024) Assessment of knowledge, perception, and readiness for telepharmacy-assisted pharmaceutical services among young pharmacists in rural Indonesia. Exploratory Research in Clinical and Social Pharmacy 16:100513
Ghozali MT (2024) Buku Ajar Sistem Informasi Manajemen untuk Farmasi, 1st ed. Deepublish, Yogyakarta
Ghozali MT (2024) Innovations in Asthma Care: Efficacy of Mobile App-Assisted Patient Education in Promoting Asthma Self-Management. The Palgrave Encyclopedia of Disability 1–15
Ghozali MT, Murani CT (2023) Relationship between knowledge and medication adherence among patients with tuberculosis: a cross-sectional survey. Bali Medical Journal 12:158–163
Ghozali MT, Satibi S, Forthwengel G (2023) The impact of mobile health applications on the outcomes of patients with chronic kidney disease: a systematic review and meta-analysis. J Med Life 16:1299
Haenssle HA, Fink C, Schneiderbauer R, et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29:1836–1842
Haleem A, Javaid M, Pratap Singh R, Suman R (2023) Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomedical Technology 4:28–38
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nature Medicine 2019 25:1 25:30–36
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2:230–243
Krittanawong C, Zhang HJ, Wang Z, Aydar M, Kitai T (2017) Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol 69:2657–2664
Lin Y, Chen L, Ali A, Nugent C, Cleland I, Li R, Ding J, Ning H (2024) Human digital twin: a survey. Journal of Cloud Computing 13:1–21
Mittelstadt BD, Allo P, Taddeo M, Wachter S, Floridi L (2016) The ethics of algorithms: Mapping the debate. Big Data Soc. https://doi.org/10.1177/2053951716679679/ASSET/71BDD9A0-2AC1-4C4C-8E11-B1BD00DECBFA/ASSETS/IMAGES/LARGE/10.1177_2053951716679679-FIG1.JPG
Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used to manage the health of populations. Science (1979) 366:447–453
Rajkomar A, Dean J, Kohane I (2019) Machine Learning in Medicine. N Engl J Med 380:1347–1358
Rajkomar A, Dean J, Kohane I (2019) Machine Learning in Medicine. N Engl J Med 380:1347–1358
Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH (2018) Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med 169:866–872
Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ (2017) Deep Learning for Health Informatics. IEEE J Biomed Health Inform 21:4–21
Samek W, Wiegand T, Müller K-R (2017) Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models.
Shickel B, Tighe PJ, Bihorac A, Rashidi P (2018) Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform 22:1589–1604
Topol EJ. (2019) Deep medicine : how artificial intelligence can make healthcare human again. 378
Wu C, Lorenzo G, Hormuth DA, et al (2022) Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophys Rev 3:021304
Wu K, Wu E, Theodorou B, Liang W, Mack C, Glass L, Sun J, Zou J (2023) Characterizing the Clinical Adoption of Medical AI Devices through U.S. Insurance Claims. NEJM AI. https://doi.org/10.1056/AIOA2300030
Yeung AWK, Torkamani A, Butte AJ, et al (2023) The promise of digital healthcare technologies. Front Public Health 11:1196596
Zafar MH, Langås EF, Sanfilippo F (2024) Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review. Robot Comput Integr Manuf 89:102769